🐿️ ScourBrowse
LoginSign Up
You are offline. Trying to reconnect...
Copied to clipboard
Unable to share or copy to clipboard
🧮 Kolmogorov Complexity

Algorithmic Information Theory, Minimum Description Length, Compression Bounds, Information Content

Improving Data and Parameter Efficiency of Neural Language Models Using Representation Analysis
arxiv.org·7h
🤖Grammar Induction
Boffins detail new algorithms to losslessly boost AI perf by up to 2.8x
theregister.com·1h
💻Local LLMs
Revisiting k-Means: 3 Approaches to Make It Work Better
machinelearningmastery.com·20h
📊Vector Quantization
Machine Learning Fundamentals: dimensionality reduction
dev.to·20h·
Discuss: DEV
📐Linear Algebra
Functional Abstract Interpretation
simon.peytonjones.org·2d·
Discuss: Hacker News
🔗Functional Compilers
A Minimal DDPM
github.com·1d·
Discuss: Hacker News
🧠Machine Learning
The Impact of Prompt Bloat on LLM Output Quality
mlops.community·10m·
Discuss: Hacker News
✨Effect Handlers
News for June 2025
ptreview.sublinear.info·3d
🕸️Graph Algorithms
Effectively Zero-Knowledge Proofs for NP with No Interaction, No Setup
eccc.weizmann.ac.il·1d·
Discuss: Hacker News
🎯Interactive Provers
2025-07-16: Understanding Hallucination in Large Language Models: Challenges and Opportunities
ws-dl.blogspot.com·11h·
Discuss: ws-dl.blogspot.com
✨Effect Handlers
Compressed data structures for Heegaard splittings
arxiv.org·1d
🕳️Persistent Homology
On Information Geometry and Iterative Optimization in Model Compression: Operator Factorization
arxiv.org·2d
🧠Machine Learning
My favorite use-case for AI is writing logs
vickiboykis.com·1d
🌳Incremental Parsing
Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
arxiv.org·7h
📏Linear Logic
SIEVE: Effective Filtered Vector Search with Collection of Indexes
arxiv.org·7h
🗂️Vector Databases
How AI Detects Cancer in Whole Slide Images
hackernoon.com·16h
🧠Machine Learning
Information Must Flow: Recursive Bootstrapping for Information Bottleneck in Optimal Transport
arxiv.org·2d
⧗Information Bottleneck
From Equal Weights to Smart Weights: OTPO’s Approach to Better LLM Alignment
towardsdatascience.com·1d
🧮Kolmogorov Bounds
Cheating? Or the acumen of modern programming? FOSS, "AI", and human conscience
gist.github.com·9h·
Discuss: Hacker News
🔗Concatenative Programming
Types That Count: Journey across Qualitative and Quantitative Intersection Types
iris.unito.it·2d·
Discuss: Hacker News
🔍Type Inference
Loading...Loading more...
AboutBlogChangelogRoadmap